Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cells ; 10(7)2021 07 19.
Article in English | MEDLINE | ID: covidwho-1323131

ABSTRACT

A novel coronavirus discovered in 2019 is a new strain of the Coronaviridae family (CoVs) that had not been previously identified in humans. It is known as SARS-CoV-2 for Severe Acute Respiratory Syndrome Coronavirus-2, whilst COVID-19 is the name of the disease associated with the virus. SARS-CoV-2 emerged over one year ago and still haunts the human community throughout the world, causing both healthcare and socioeconomic problems. SARS-CoV-2 is spreading with many uncertainties about treatment and prevention: the data available are limited and there are few randomized controlled trial data on the efficacy of antiviral or immunomodulatory agents. SARS-CoV-2 and its mutants are considered as unique within the Coronaviridae family insofar as they spread rapidly and can have severe effects on health. Although the scientific world has been succeeding in developing vaccines and medicines to combat COVID-19, the appearance and the spread of new, more aggressive mutants are posing extra problems for treatment. Nevertheless, our understanding of pandemics is increasing significantly due to this outbreak and is leading to the development of many different pharmacological, immunological and other treatments. This Review focuses on a subset of COVID-19 research, primarily the cytoskeleton-related physiological and pathological processes in which coronaviruses such as SARS-CoV-2 are intimately involved. The discovery of the exact mechanisms of the subversion of host cells by SARS-CoV-2 is critical to the validation of specific drug targets and effective treatments.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/pathology , Coronaviridae Infections/pathology , Cytoskeleton/pathology , Animals , Antiviral Agents/therapeutic use , Coronaviridae Infections/drug therapy , Coronavirus/drug effects , Coronavirus/physiology , Cytoskeleton/drug effects , Host-Pathogen Interactions/drug effects , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
2.
Chem Biol Interact ; 329: 109209, 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-973905

ABSTRACT

Kinetic modeling of the behavior of complex chemical and biochemical systems is an effective approach to study of the mechanisms of the process. A kinetic model of coronaviral infection development with a description of the dynamic behavior of the main variables, including the concentration of viral particles, affected cells, and pathogenic microflora, is proposed. Changes in the concentration of hydrogen ions in the lungs and the pH -dependence of carbonic anhydrase activity (a key breathing enzyme) are critical. A significant result is the demonstration of an acute bifurcation transition that determines life or system collapse. This transition is connected with exponential growth of concentrations of the process participants and with functioning of the key enzyme carbonic anhydrase in development of toxic effects. Physical and chemical interpretations of the therapeutic effects of the body temperature rise and the potential therapeutic effect of "thermoheliox" (respiration with a thermolized mixture of helium and oxygen) are given. The phenomenon of "thermovaccination" is predicted, which involves stimulation of the immune response by "thermoheliox".


Subject(s)
Coronaviridae Infections/metabolism , Helium/chemistry , Oxygen/chemistry , Adaptive Immunity , Body Temperature , Carbonic Anhydrases/metabolism , Coronaviridae Infections/pathology , Coronaviridae Infections/therapy , Helium/therapeutic use , Humans , Hydrogen-Ion Concentration , Kinetics , Lung/metabolism , Models, Theoretical , Oxygen/therapeutic use
3.
Emerg Microbes Infect ; 9(1): 949-961, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-786997

ABSTRACT

The emergences of coronaviruses have caused a serious global public health problem because their infection in humans caused the severe acute respiratory disease and deaths. The outbreaks of lethal coronaviruses have taken place for three times within recent two decades (SARS-CoV in 2002, MERS-CoV in 2012 and SARS-CoV-2 in 2019). Much more serious than SARS-CoV in 2002, the current SARS-CoV-2 infection has been spreading to more than 213 countries, areas or territories and causing more than two million cases up to date (17 April 2020). Unfortunately, no vaccine and specific anti-coronavirus drugs are available at present time. Current clinical treatment at hand is inadequate to suppress viral replication and inflammation, and reverse organ failure. Intensive research efforts have focused on increasing our understanding of viral biology of SARS-CoV-2, improving antiviral therapy and vaccination strategies. The animal models are important for both the fundamental research and drug discovery of coronavirus. This review aims to summarize the animal models currently available for SARS-CoV and MERS-CoV, and their potential use for the study of SARS-CoV-2. We will discuss the benefits and caveats of these animal models and present critical findings that might guide the fundamental studies and urgent treatment of SARS-CoV-2-caused diseases.


Subject(s)
Betacoronavirus/physiology , Coronaviridae Infections/pathology , Coronaviridae Infections/prevention & control , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/pathology , Pneumonia, Viral/prevention & control , Research/trends , Animals , COVID-19 , Humans , Middle East Respiratory Syndrome Coronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL